How can we use technology and design to nourish spaces (e.g. classrooms, museums, etc) mediating processes between people and people, people and products, people and the environment.

Educational Robotics for Computational Thinking

Few studies have systematically investigated the effectiveness of Educational Robotics (ER) activities for the development of Computational Thinking (CT) skills. Through an action research study, consisting of four consecutive cycles, this work aimed to determine if ER activities can improve students’ CT skills via ER. The study examined the issue with a total of 118 student-participants over a period of two and a half years. Findings from quantitative data showed that students who participated in ER activities had a statistically significant improvement in CT as opposed to students who did not participate in ER activities. In addition, students who participated in ER activities were able to effectively solve complex problems in real ER competitions. The work provides a comprehensive picture of the use of different ER technologies and shows that CT skills are developed through ER activities regardless of the technological tool being used.

[e.g.,  Constantinou, V., & Ioannou A. (2018). Development of Computational Thinking Skills through Educational Robotics. EC-TEL 2018. Lecture Notes in Computer Science, Springer.]

Constructionist learning model for social technologies​

The rapid popularity of social technologies has led to a widespread of research studies conducted in formal and informal contexts demonstrating a wide range of their benefits in teaching and learning. Yet, the implementation of Web 2.0 technologies in classroom settings calls for better task-technology alignment. With this in mind, this dissertation brought forward a three-year intervention, employing constructionism as an overarching theoretical framework, and unpacking the potential of social technologies as instructional tools that support social construction of artifacts by groups of language learners. Findings demonstrate the constructionist model that demonstrates the core dimensions of social technologies as social constructionist tools, with actions held for the social construction of an artifact; and a set of instructional design elements that encloses the theoretical understanding of the classroom whilst groups of learners use social technologies for constructing an artifact. 

[e.g., Parmaxi, A., Zaphiris, P., & Ioannou, A. (2016). Enacting artifact-based activities for social technologies in language learning using a design-based research approach. Computers in Human Behavior, 63, 556-567.

Parmaxi, A., & Zaphiris, P. (2015). Specifying the dynamics of social technologies as social microworlds. Behaviour & Information Technology, 34(4), 413-424]

Educational robotics as tools for group metacognition and collaborative knowledge construction in STEM education​

Few studies have systematically investigated the effectiveness of Educational Robotics (ER) activities for the development of Computational Thinking (CT) skills. Through an action research study, consisting of four consecutive cycles, this work aimed to determine if ER activities can improve students’ CT skills via ER. The study examined the issue with a total of 118 student-participants over a period of two and a half years. Findings from quantitative data showed that students who participated in ER activities had a statistically significant improvement in CT as opposed to students who did not participate in ER activities. In addition, students who participated in ER activities were able to effectively solve complex problems in real ER competitions. The work provides a comprehensive picture of the use of different ER technologies and shows that CT skills are developed through ER activities regardless of the technological tool being used.

[e.g.,  Constantinou, V., & Ioannou A. (2018). Development of Computational Thinking Skills through Educational Robotics. EC-TEL 2018. Lecture Notes in Computer Science, Springer.]

Expanding the Curricular Space with Educational Robotics

Computational-making-enhanced activities, framed as activities promoting making, tinkering, coding and play in the learning process, have gained a lot of attention during the last decade. Despite the significant interest in this type of activities, the majority of research has focused on implementations in informal learning contexts. Our work takes computational-making into the classroom allowing young learners to engage in projects using arts, crafts, and technological tools such as physical robots. We investigate learners’ knowledge gains and attitudes in the areas of STEAM, as well as their development of 21st-century skills. Our findings suggest that young students can greatly benefit from computational-making-enhanced activities integrated into the school curriculum.

[e.g., Ioannou A., Socratous, C., Nikolaedou, E. (2018). Expanding the Curricular Space with Educational Robotics : A Creative Course on Road Safety. EC-TEL 2018. Lecture Notes in Computer Science, Springer (in press).]

Learning through Making, Tinkering, Coding and Play

Computational-making-enhanced activities, framed as activities promoting making, tinkering, coding and play in the learning process, have gained a lot of attention during the last decade. Despite the significant interest in this type of activities, the majority of research has focused on implementations in informal learning contexts. Our work takes computational-making into the classroom allowing young learners to engage in projects using arts, crafts, and technological tools such as physical robots. We investigate learners’ knowledge gains and attitudes in the areas of STEAM, as well as their development of 21st-century skills. Our findings suggest that young students can greatly benefit from computational-making-enhanced activities integrated into the school curriculum.

[e.g., Timotheou, S., Ioannou, A. (2019). On a making & tinkering STEAM approach to learning Mathematics: Knowledge gains, attitudes, and 21 st century skills. Proceedings of the 13th International Conference on Computer Supported Collaborative Learning.]

A Distributed Cognition Perspective for Collaboration and Coordination

This study focused on the understanding of the interactions evident in an artifact ecology around a design task. The researchers delved into the physical and digital space of several learning groups to obtain a rich understanding of their collaboration around design tasks. Through the rich data set – interviews, focus groups, reflective diaries, online interactions, and video recordings for face-to-face sessions – we constructed a summative description of the group work and extended the methodological framework of Distributed Cognition for Teamwork.

[e.g.,Vasiliou,C., Ioannou, A., & Zaphiris, P. (2019). From behaviour to design: implications for artifact ecologies as shared spaces for design activities, Behaviour & Information Technology, DOI: 10.1080/0144929X.2019.1601258]

Problem-Based Learning in Multimodal Information Spaces

In a  series of studies we enhanced a Problem Based Learning (PBL) environment with affordable, everyday technologies that can be found in most university classrooms (e.g., projectors, tablets, owned smartphones, traditional paper-pencil, and Facebook). The work was conducted over a three-year period, with 60 post-graduate learners in design (HCI) courses, following a PBL approach. We contributed a detailed description of how PBL can be enacted in a multimodal, technology-rich classroom. We also presented evaluation data on learners’ technology adoption experience while engaging in PBL.

[e.g., Ioannou, A., Vasiliou, C., Zaphiris, P., Arh. T., Klobučar, T., & Pipan, M. (2015). Creative multimodal learning environments and blended interaction during problem-based activity in HCI education. TechTrends, 59 (2), 47-56.

Ioannou, A., Vasiliou, C.,& Zaphiris, P. (2016). Problem Based Learning in Multimodal Learning Environments: Learners’ Technology Adoption Experiences. Journal of Educational Computing Research, 54 (7), 1022-1040.]

Multitouch Interactive Tabletops for Collaboration and Peacemaking​

In his work, a tabletop application was used to mediate dialog and collaborative construction of a taxonomy of ideas based on the participants’ consensus. The scenarios for discussion concerned the promotion of global peace and the social integration of immigrants in the society.The study contributes a systematically developed coding scheme capturing the cognitive and physical elements of problem-based group collaboration around the interactive tabletop. Also, the consistent themes and ideas contributed across the participating groups highlight a number of areas where research could focus in terms of using technology for peace.

[e.g., Ioannou, A., Zaphiris, P., Loizides, F., & Vasiliou, C. (2013).  Let’s talk about Technology for Peace: A systematic assessment of problem-based group collaboration around an interactive tabletop. Interacting with Computers, doi: 10.1093/iwc/iwt061.]